

AFCU 2019 Churn Analytics Competition

Team Number: 6

Yuan Du, Jianbin Zhu

Department of Statistics & Data Science

Feb. 26th, 2020

OUTLINE

- Problem Statements
- Data Analysis
- Model and Approach
- Results
- Recommendations
- Conclusions

Problem Statements

- The goal of this competition is to develop a model that can correctly predict if a member is about to churn by using AFCU customer historical data.
- We designed two objectives:

1) To predict customer churn as a given date (Model-1)

7/31/2019 in this problem

2) To predict customer churn in the early date (Model-2)

At month 3, 6 and 9 after the open date

Data Analysis - Datasets

	Name	Dimensions (Rows x Cols)	Variables			
T	Summary	38,921 x 12	Memberid, <mark>Status</mark> , OpenDate, Age, Tenure,			
datasets (4)	Online Banking	220,511 x 3	Memberid, MonthEndDate, + 1 acctivity			
	Loan Transaction	228,104 x 5	Memberid, MonthEndDate, + 2 acctivities			
	Transaction	482,826 x 10	1emberid, MonthEndDate, + 8 acctivities			
Teet	Summary	9730 x 9				
lest datasets (4)	Online Banking	54,388 x 3	The same as training dataset except Churn Status (Target variable)			
	Loan Transaction	56,522 x 5				
	Transaction	121,264 10				

Data Analysis – Define Churn

• Target variable: { Closed & Charge Off: Churn =1 ; Open: Churn=0 }

Data Analysis – Data Merging(1/2)

- Data merging plan
- Develop an R function to fulfill this plan
- Primary Key: Memberid
- Final dataset:
- Includes all variables from Summary Dataset.
- New variables from three Transaction Datasets.

Data Analysis – Data Merging(2/2)

• Data merging training cut-off

- Churn happens on the first month and pick at month 6
- Customer whose account is open ranges from 7 to 35 months.

Data Analysis – New Variables

• Model 1: To create three sets of segments variables at 1, 4,7 (11 new variables in each set)

0	Month 1					Month 4			Mo	nth 7
Ĭ	Memberid	Online0	Onlinel	Online2	Online3	Online4	Online5	Online6	Online7	Last open
en 🖌	4444R4MGG	0	0	0	0	1	0	0	0	date.
0	444F4RR4K	0	0	0	0	0	0	2	1	12/21/2018
ite	4458RZK85	4	6	13	0	8	9	7	9	12/51/2018

• Model 2: To create three sets of segments variables at Month 3, 6 and 9 (11 new variables in each Month) and predict using these three segments variables separately.

Ope				Month 3				Month 6			M
n	Memberid	Online0	Onlinel	Online2	Online3	Online4	Online5	Online6	Online7	Online8	Online9
O a	4444R4MGG	0	0	3	0	1	0	0	0	0	1
ite	444F4RR4K	0	3	0	1	0	0	3	1	0	0

Model and Approach – Model Plan

• Model-1:

- Include all variables from Summary Dataset and three sets of new variables.
- Predict customer churn by using these three segments variables separately and compare to determine which set is the best predictors.
 - Obtain one result of churn probability as the given date for the test dataset.
- Model-2:
 - Include all variables from Summary Dataset and all new variables of Month 3, 6 and 9.
 - Predict customer churn by using these three segments variables separately.
 - Obtain three results of churn probabilities for month 3, 6, and 9 for the test dataset.

Model and Approach – Variable Selection

• Model 1:

Target variable: Churn

Predictors: 16

"Age","Tenure","DBINDICATOR","CCINDICATOR", "NumberofSavingsProducts", "INDIRECT", "Online_sum4","LoanNum_sum4", "LoanAmount_sum4", "NDirDep_sum4", "SumDirDep_sum4", "NBillPay_sum4", "NBranch_sum4", "FeeCharge_sum4", "SumFee_sum4", "NTotTrans_sum4"

Drop variables: "CountofLoans", high correlation with LoanNum_sum4 (0.828) "NDebit_sum4 ", high correlation with NTotTrans_sum4 (0.912)

• Model 2:

Include the same types of variables.

Model and Approach – Data Partition (70/30)

- Logistic Regression
- Decision Tree
- Random Forest
- XGBoost

Results – Model-1 (1/3)

• Predictive Model Performances

	Logistic Regression		Decision Tree		Random Forest		XGBoost	
	Train	Validation	Train	Validation	Train	Validation	Train	Validation
Accuracy	88.5%	88.8%	93.7%	93.6%	96.2%	94.4%	96.8%	94.6%
Misclassification	11.5%	11.2%	6.3%	6.4%	3.8%	5.6%	3.2%	5.4%
True Positive Rate	73.3%	75.3%	83.0%	83.1%	91.7%	84.2%	93.0%	85.1%
False Positive Rate	7.1%	7.3%	3.3%	3.3%	2.4%	2.7%	2.1%	2.7%
Specificity	92.9%	92.7%	96.7%	96.7%	97.6%	97.3%	97.9%	97.3%
Precision:	74.9%	75.0%	88.0%	87.7%	91.4%	90.0%	92.9%	90.1%
Prevalence	22.5%	22.5%	22.5%	22.5%	22.5%	22.5%	22.5%	22.5%

Results – Model-1(2/3)

• AUC of ROC Curves

Approach	AUC					
Approach	Train	Validation				
XGBoost	0.994	0.975				
Random Forest	0.986	0.969				
Decision Tree	0.967	0.964				
Logistic Regression	0.937	0.939				

False Positive Rate

Results – Model-1(3/3)

• Variable Importance

Results – Model-2

• Predictive model performances and AUC

Model	Monthe	Accu	iracy	AUC		
Approach	wonths	Train	Validation	Train	Validation	
	Three	95.0%	87.0%	0.937	0.932	
XGBoost	Six	96.4%	88.0%	0.967	0.964	
	Nine	97.3%	88.5%	0.986	0.969	
Logistic Regression	Three	84.9%	85.1%	0.812	0.816	
	Six	85.2%	85.6%	0.820	0.822	
	Nine	85.5%	85.8%	0.828	0.832	

Results – Prediction on test dataset

• Confusion Matrix and Accuracy (Model-1 & Model-2)

	Three Months		Six Months		Nine		
Wodel-1	Closed	Open	Closed	Open	Closed	Open	Total
Closed	1,181	877	1,268	790	1,310	748	2,058
Open	273	7,399	246	7,426	232	7,440	7,672
Total	1,454	8,276	1,514	8,216	1,542	8,188	9,730
Accuracy	88.18%		89.35%		89		

- Month 6 is the most critical point for customer churn.
- Predict individual customer churn probability at month 3, 6, 9 is recommended
- Rank customer based on probability and develop retention strategies such as easy hanging fruits on reducing number/amount of fee charges, promotions, etc.
- Collect additional social economics data to better develop retention strategies based on member's features.

Conclusions

- We explored the data sets with data visualizations, designed the data merging plan and identified the members' activities.
- We developed two models, which can predict not only the probabilities of members' churn status as a given date, but also the probabilities of members' status of churn in three months, six month and nine months after the open date of members' accounts.
- ➤ Both models have higher accuracies and AUCs of ROC curve.
- > The comparison of model approaches shows that XGBoost method is the best one.
- Our models can help AFCU to detect the early signs of members' churn. Thus, AFCU can take specific actions to prevent churn and dramatically improve the success of the retention offers to the potential churners.

Thank You!

By Team Number: 6