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Vulnerability of Deep Learning Model
1 Imperceptible adversarial attacks can fool Deep Convolutional

Neural Networks with high confidence.

Figure 1: The architecture of CNN,
Standford CS 230

Figure 2: (source: Angshuman Gosh|DLDC
2021)

Figure 3: Adversarial examples of image and
audio (Gong et al., 2018)
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2 Adversarial examples could also attack physical world in 2D and 3D
settings.

Figure 4: Adversarial examples 2D print (Kurakin
et al., 2018) Figure 5: Adversarial examples 3D print (Athalye

et al., 2018b)
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Adversarial Examples in Healthcare
The United States spent approximately $3.3 trillion (17.8% of GDP) on
healthcare in 2016. One study estimated medical fraud to be as high as
$272 billion in 2011 (Finlayson et al., 2018).

Figure 6: Adversarial examples on medical images (Finlayson et al., 2018)
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Figure 7: Adversarial examples on medical image, text and coding (Finlayson et al., 2019)
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Definition of Adversarial Attack

1 Given a trained deep learning model f and an original input data
sample x , generating an adversarial example x ′ can generally be
described as a box-constrained optimization problem:

min
x ′

∥x − x ′∥,

s.t. f (x ′) = c ′,

f (x) = c,

c ′ ̸= c,

x ∈ [0, 1]

(1)

The distance d∥.∥ between x − x ′ denotes the perturbation added
on natural image x .

2 The goal of attack is to fool the model and thus misclassify the
labels.

Yuan Du (University of Central Florida) How Does Adversarial Attack Work? Definition of Adversarial Attack
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Types of Adversarial Attack

Figure 8: Adversarial example generation and adversarial attack process (Hongshuo Liang et al., 2022)

1 White-box attack: The attacker has complete knowledge of the target model
including model training process and weights. It’s a stronger attack than
black-box attack.

2 Black-box attack: The attacker assumes no knowledge of the target model.
One category of black-box attacks allows probing the deployed target models
with queries. This setup is more commonly known as query-based attack.

Yuan Du (University of Central Florida) How Does Adversarial Attack Work? Types of Adversarial Attack
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An untargeted white-box intends to increase the loss function with
bounded perturbation distance ϵ to generate adversarial examples x ′:

argmax
δ∈∆

L(fθ(x + δ), y) (2)

where ∆ is the ϵ-ball in the lp-norm.

The common option of perturbation distance are l∞-norm ϵ ball and
l2-norm ϵ ball around x , where ϵ > 0.

Yuan Du (University of Central Florida) How Does Adversarial Attack Work? Types of Adversarial Attack
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Let θ is the parameters of a model, L(θ, x , y) be the cost used to train
the neural network.

First generation attack - Fast Gradient Sign Method (FGSM)
(Ian J Goodfellow et al., 2014) :

x + ϵ sign(∇x L(θ, x , y)) (3)

Adaptive attack - Projected Gradient Descent (PGD) (Madry et al.,
2017) on the negative loss function:

x t+1 = Projx+S(x t + α sign(∇x t L(θ, x t , y))) (4)

Yuan Du (University of Central Florida) How Does Adversarial Attack Work? Types of Adversarial Attack
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More recent stronger adaptive attacks

Expectation Over Transformation (EOT) aims to constrain the
expected effective distance between the adversarial t(x ′) and original
inputs t(x) instead of x ′ − x . PGD is used to iteratively generate
the adversarial example by updating the gradient:

∇x ET (x)[f (T (x))] = ET (x)[∇x f (T (x))] (5)
Backward Pass Differentiable Approximation (BPDA) can be applied
on non-differential network where gradients are not readily available:

∇x f (g(x))|x=x̂ = ∇x f (x)|x=g(x̂) (6)

where g(·) is neither smooth nor differentiable and can’t be
backpropagated through to generate adversarial examples.

Yuan Du (University of Central Florida) How Does Adversarial Attack Work? Types of Adversarial Attack
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Types of Adversarial Defense

Adversarial Purification (AP): a process that remove/purify
adversarial examples before the model training process for
adversarial defense.
Adversarial Training (AT): a process that injects adversarial examples
in the training data of a model to make it adversarially robust.

We use Energy based Model(EBM) adversarial purification for defense in
this work.

Yuan Du (University of Central Florida) Adversarial Defense Types of Adversarial Defense
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Current Adversarial Defense

Defense evaluation problems: Obfuscated Gradients
Shattered gradient.
Stochastic gradient.
Exploding & Vanishing
Gradients.

Figure 9: Athalye et al., 2018a

Defense evaluation on medical
images is inadequate:

Papers uses attack methods
such as FGSM, BIM, PGD and
no paper uses stronger attacks
like EOT, BPDA.
Treat model was not clearly
defined.
Attack statement on lp-norm,
iteration steps, number of
evaluated images are not clear
or unavailable.

Yuan Du (University of Central Florida) Adversarial Defense Current Adversarial Defense
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Modern Deep EBM
EBM (J. Xie et al., 2016) is a
Gibbs-Boltzmann density.
A deep EBM has the form:

p(x ; θ) = 1
Z (θ) exp{−U(x ; θ)} (7)

where x ∈ RD is an image signal. The
energy U(x ; θ) is a ConvNet with
weights θ, a scalar output.
Z is intractable normalizing constant:

Z (θ) =
∫

X
exp [−U(x ; θ)] dx (8)

In order to find θ such that the parametric
model pθ(x) is a close approximation of the
data distribution q(x). Kullback-Leibler (KL)
divergence was used to measure the closeness
by solving argminθ L(θ):

argmin
θ

DKL(q(x)||p(x ; θ))

= argmin
θ

Eq[log q
pθ

]
(9)

Main ways to learn probabilistic models:
MLE learning

Variational approximation
Normalizing flow

Yuan Du (University of Central Florida) Energy Based Model (EBM) Modern Deep EBM
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Maximum Likelihood Estimation
Objective function of MLE learning:

L(θ) = Eq[− log p(x ; θ)] (10)
The derivative of the loss is:

∇L(θ) = ∇ log z(θ) + ∇Eq[U(X ; θ)] (11)

where the ∇ log z(θ) can be expressed as:

∇ log z(θ) = 1
z(θ)∇U(θ)

= 1
z(θ)∇

∫
exp [−U(x ; θ)] dx

= 1
z(θ)

∫
exp [−U(x ; θ)]∇[−U(x ; θ)] dx

=
∫ 1

z(θ) exp [−U(x ; θ)]∇[−U(x ; θ)] dx

=
∫

pθ∇[−U(x ; θ)] dx

= −Epθ
[∇U(x ; θ)]

(12)

Thus, the gradient used to learn θ becomes:

∇L(θ) = ∇Eq[U(X ; θ)] − ∇Epθ
[U(X ; θ)]

≈ 1
n

n∑
i=1

∇θU(X+
i ; θ) − 1

m

m∑
i=1

∇θU(X−
i ; θ)︸ ︷︷ ︸

MCMC sampling

(13)

Gradient-based MCMC and Langivin Dynamics:

X (k+1) = X (k) − ϵ2

2 ∇X (k)U(X (k); θ) + ϵZk , (14)

where ϵ is the step size and Zk ∼ N(0, ID). The Langevin
trajectories are initialized from a set of states {X−

i,0}n
i=1 obtained

from a certain initialization strategy.

Different implementations of the MCMC synthesis step:
1 Contrastive Divergence: runs a finite MCMC from data

(Hinton, 2002).
2 Persistent Chain: runs a finite MCMC from the synthesized

data from previous epoch.
3 Cooperative Divergence: runs a finite MCMC from a generator

in tandem with the energy.
4 Non-persistent short-run MCMC: runs a finite MCMC Gaussian

White noise.

Yuan Du (University of Central Florida) Energy Based Model (EBM) Maximum Likelihood Estimation
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Why do we choose EBM for defense?

Simplicity and Stability: An EBM is the only object that needs to
be trained and designed. Separate networks are not tuned to ensure
balance (for example, unbalanced training can result in posterior
collapse in VAEs or poor performance in GANs).
Sharing of Statistical Strength: Since the EBM is the only trained
object, it requires fewer model parameters than approaches that use
multiple networks. More importantly, the model being concentrated
in a single network allows the training process to develop a shared
set of features as opposed to developing them redundantly in
separate networks.
Adaptive Computation Time: An iterative stochastic optimization
process, which allows for a trade-off between generation quality and
computation time.
Flexibility Of Generation: EBMs directly modeling particular
regions as high or lower energy during the generation process to
avoid unwanted regions of data, especially for discontinuous data
manifolds, unlike VAEs or flow based models.

(Du et al., 2019)

Yuan Du (University of Central Florida) ConvEBMDefense Why do we choose EBM for defense?
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Use EOT as Defense
Understanding EOT attack

1 If T (x) is not differentiable, it will cause exploding or vanishing gradient
problem.

∇x ET (x)[f (T (x))] = ET (x)[∇x f (T (x))] (15)

2 Evaluate stochastic classifiers f (T (x)). Let F (x) = ET (x)[f (T (x))].
Expectation Over Transformation (EOT) to circumvent stochastic gradient
problem that’s caused by random classifier (Athalye et al., 2018a).

F̂Hadv(x) ≈ 1
Hadv

Hadv∑
h=1

f (x̂h), x̂h ∼ T (x) i.i.d (16)

where Hadv is number of EOT attack samples. Typically around 10 to 30.
Small Hadv causes random classification.

Yuan Du (University of Central Florida) ConvEBMDefense Use EOT as Defense
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Convergent EBM Defense
Convergent EBM T (x) and EOT defense. Solve exploding or vanishing gradient
problem for T(x) by change of variable x = h(z) where h(·) is differentiable. With
large enough MCMC sampling steps K, we can remove the adversarial noise in
langevin sampling step.

Figure 10: H impact on unstable and stable classification by EOT attack/defense (Hill et al., 2020)

F̂H ≈ 1
H

H∑
h=1

f (x̂h), x̂h ∼ T (x) i.i.d (17)

Yuan Du (University of Central Florida) ConvEBMDefense Use EOT as Defense
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Visualization of ConvEBMDefense Model

Figure 11: Convergent EBM Defense on Medical images

Figure 12: Convergent EBM vs Non-convergent EBM
and MCMC steps K (Hill et al., 2020).
we experimented on K=1000 and 2000 on chest-xray

Figure 13: EOT replicates (Hill et al., 2020).
we experimented on Hdef=64 and 128 on chest-xray
with Hadv=24

Yuan Du (University of Central Florida) ConvEBMDefense Use EOT as Defense
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Dataset and Model Pre-training

Figure 14: Original images & images Generated
by ConvEBM

We use WideResNet as classifier and have a
binary classification accuracy of 92.5%.

Figure 15: Accuracy over BPDA+EOT24 attack without
defnese

Chest-xray (D. Kermany et al., 2018)

Train Test

5,232 624

Table 1: In the training set: 3883 images characterized as depicting pneumonia
(2,538 bacterial and 1,345 viral) and 1,349 normal.

Yuan Du (University of Central Florida) Experiment
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Defense Model Training
We use BPDA + EOT attack, which is known as the strongest adaptive attack for the
defense evaluation:

∆EOT+BPDA(x , y) = 1
Hadv

Hadv∑
h=1

∇x̂h L
(

1
Hadv

Hadv∑
h=1

f (x̂h), y
)

, x̂h ∼ T (x)i.i.d (18)

Figure 16: Number of adversarial attack steps on Chest x-ray,
BPDA + EOT24, K=2000, Hdef = 128
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Experiment Comparison
BPDA+EOT24 attack reduced the robust accuracy to 0.016 without defense.
Our ConvEBMDefense model achieved 86.8% accuracy when bounded by l∞ distortion with ϵ =
0.031 (8/255) on 320 images, when the attacker has full white-box access.

Dataset Attack Defense Nat Adv ϵ Adv steps Hdef K samples

Chest-xray BPDA+EOT24 Ours 0.923(± 0.003) 0.872(± 0.007) 8/255 30|50 64|128 2000 320
Chest-xray BPDA+EOT24 Ours 0.922 0.858 8/255 30 64 1000 320
Chest-xray BPDA Ours 0.917(± 0.011) 0.871(± 0.002) 8/255 30 64|128 2000 320
Chest-xray PGD(l∞) AT 0.925 0.89 8/255 5|25 NA NA NA

Chest-xray14 BIM(l∞) Model1 0.74 0.650 0.3? 5 NA NA 200
Chest-xray14 PGD Model2 0.862 0.772 - - NA NA -
Chest-xray14 PGD(l∞) AT 0.865 0.839 4/255 4 NA NA NA|-

Table 2: Defense for l∞ against high-power whitebox attacks on Chest Xray. Our robust accuracy with BPDA + EOT attack is
averaged at 0.868. and the natural accuracy preserved the accuracy of pre-trained WideResNet model. None of the evaluated
model preserved the accuracy of pre attack or had convincing defense accuracy result. Model1 (Taghanaki et al., 2019),Model2
(L. Chen et al., 2021), and AT (Xu et al., 2021) used chest-xray dataset with 14 diseases (Wang et al., 2017). See discussion.

All evaluations are inadequate with lack of attacking steps.
The 1st Model used Kernelized manifold mapping to break the local linearity of neural
networks. However, their black-box attack is better than white-box attack, which indicates
gradient shattering. This should be evaluated by BPDA attack (Athalye et al., 2018a).
The 2nd Model used pruning and attention layer as a defense method. It’s based on random
classifier, which should be evaluated by EOT attack (Athalye et al., 2018a).
The 3rd Model reported PGD 4/255 attack accuracy without AT is 0.455 which indicates the
ineffective attack.
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1 Develop universal defense on medical diagnostic system on defense
tasks such as Segmentation, Object Detection on any dataset.

2 Improve defense accuracy by improving EBM MCMC sampling.
3 Evaluate and improve the most recent diffusion model defense (Nie

et al., 2022) .
4 Use EBM diffusion recovery likelihood model (Gao et al., 2020b) for

defense to improve defense accuracy.
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Thank You!
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