Interpret significance test
--
Welcome !
--
--
--
(Repeated Measures are not included-more than two matched groups)
(Repeated Measures are not included-more than two matched groups)
t.test(Cost_Observed ~ Physician_Group, data = Data)
R
to run t test. Welch Two Sample t-testdata: Cost_Observed by Physician_Groupt = -10.305, df = 980.71, p-value < 2.2e-16alternative hypothesis: true difference in means is not equal to 095 percent confidence interval: -10203.21 -6938.82sample estimates:mean in group 1 mean in group 2 10060.36 18631.37
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 4## Physician_Group GroupVariance Mean total.count## <dbl> <dbl> <dbl> <int>## 1 1 141627419. 10060. 357## 2 2 560053334. 18631. 1898
Welch Two Sample t-testdata: Cost_Observed by Physician_Groupt = -10.305, df = 980.71, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 095 percent confidence interval: -10203.21 -6938.82sample estimates:mean in group 1 mean in group 2 10060.36 18631.37
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 4## Physician_Group GroupVariance Mean total.count## <dbl> <dbl> <dbl> <int>## 1 1 141627419. 10060. 357## 2 2 560053334. 18631. 1898
Welch Two Sample t-testdata: Cost_Observed by Physician_Groupt = -10.305, df = 980.71, p-value < 2.2e-16 alternative hypothesis: true difference in means is not equal to 0 95 percent confidence interval: -10203.21 -6938.82sample estimates:mean in group 1 mean in group 2 10060.36 18631.37
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 4## Physician_Group GroupVariance Mean total.count## <dbl> <dbl> <dbl> <int>## 1 1 141627419. 10060. 357## 2 2 560053334. 18631. 1898
## ## Wilcoxon rank sum test with continuity correction## ## data: LOS_Observed by Physician_Group## W = 245515, p-value < 2.2e-16## alternative hypothesis: true location shift is not equal to 0
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 3## Physician_Group Median total.count## <dbl> <dbl> <int>## 1 1 3 357## 2 2 5 1898
## Df Sum Sq Mean Sq F value Pr(>F) ## Insurance_Type 6 1.099e+10 1.832e+09 3.664 0.00127 **## Residuals 2248 1.124e+12 5.000e+08 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 7 x 3## Insurance_Type Mean total.count## <chr> <dbl> <int>## 1 COMMERCIAL - INDEMNITY 21453. 72## 2 MANAGED CARE 20340. 254## 3 MEDICAID 18070. 269## 4 MEDICARE 17117. 1343## 5 OTHER GOVERNMENT PAYORS 16963. 139## 6 SELF PAY 10873. 169## 7 WORKERS COMPENSATION 22032. 9
## ## Kruskal-Wallis rank sum test## ## data: LOS_Observed by Insurance_Type## Kruskal-Wallis chi-squared = 18.39, df = 6, p-value = 0.005329
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 7 x 3## Insurance_Type Median total.count## <chr> <dbl> <int>## 1 COMMERCIAL - INDEMNITY 5 72## 2 MANAGED CARE 5 254## 3 MEDICAID 5 269## 4 MEDICARE 5 1343## 5 OTHER GOVERNMENT PAYORS 5 139## 6 SELF PAY 4 169## 7 WORKERS COMPENSATION 4 9
## ## Paired t-test## ## data: Cost by group## t = 0.00073398, df = 2254, p-value = 0.9994## alternative hypothesis: true difference in means is not equal to 0## 95 percent confidence interval:## -1235.300 1236.225## sample estimates:## mean of the differences ## 0.4625277
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 5## group count mean sd max## <fct> <int> <dbl> <dbl> <dbl>## 1 After 2255 16973. 22447. 243710.## 2 Before 2255 16973. 22432. 243299.
## ## Wilcoxon signed rank test with continuity correction## ## data: LOS by group## V = 0, p-value < 2.2e-16## alternative hypothesis: true location shift is not equal to 0
## `summarise()` ungrouping output (override with `.groups` argument)
## # A tibble: 2 x 5## group count mean sd median## <fct> <int> <dbl> <dbl> <dbl>## 1 After 2255 3.57 4.96 2## 2 Before 2255 7.16 8.01 5
cor.test(Data$Age, Data$Cost_Observed)
## ## Pearson's product-moment correlation## ## data: Data$Age and Data$Cost_Observed## t = -0.67119, df = 2253, p-value = 0.5022## alternative hypothesis: true correlation is not equal to 0## 95 percent confidence interval:## -0.05538456 0.02715466## sample estimates:## cor ## -0.01413904
cor.test(Data$Number_of_consults, Data$Cost_Observed, method = "spearman")
## Warning in chisq.test(table(Data$Insurance_Type, Data$Gender)): Chi-squared## approximation may be incorrect
## ## Pearson's Chi-squared test## ## data: table(Data$Insurance_Type, Data$Gender)## X-squared = 107.83, df = 6, p-value < 2.2e-16
## Warning in chisq.test(table(Data$Insurance_Type, Data$Gender)): Chi-squared## approximation may be incorrect
## ## Pearson's Chi-squared test## ## data: table(Data$Insurance_Type, Data$Gender)## X-squared = 107.83, df = 6, p-value < 2.2e-16
## ## Female Male## COMMERCIAL - INDEMNITY 36 36## MANAGED CARE 113 141## MEDICAID 118 151## MEDICARE 682 661## OTHER GOVERNMENT PAYORS 10 129## SELF PAY 57 112## WORKERS COMPENSATION 4 5
## Female Male## [1,] 113 141## [2,] 118 151## [3,] 682 661## [4,] 57 112## [5,] 50 170
## Female Male## [1,] 113 141## [2,] 118 151## [3,] 682 661## [4,] 57 112## [5,] 50 170
## ## Pearson's Chi-squared test## ## data: rtbl## X-squared = 70.963, df = 4, p-value = 1.421e-14
## ## AMERICAN INDIAN ASIAN BLACK OTHER WHITE## COMMERCIAL - INDEMNITY 0 1 15 6 50## MANAGED CARE 1 1 21 10 221## MEDICAID 1 0 96 6 166## MEDICARE 11 6 184 60 1082## OTHER GOVERNMENT PAYORS 0 0 21 5 113## SELF PAY 0 0 21 8 140## WORKERS COMPENSATION 0 0 0 0 9
## ## AMERICAN INDIAN ASIAN BLACK OTHER WHITE## COMMERCIAL - INDEMNITY 0 1 15 6 50## MANAGED CARE 1 1 21 10 221## MEDICAID 1 0 96 6 166## MEDICARE 11 6 184 60 1082## OTHER GOVERNMENT PAYORS 0 0 21 5 113## SELF PAY 0 0 21 8 140## WORKERS COMPENSATION 0 0 0 0 9
## ## AMERICAN INDIAN ASIAN## COMMERCIAL - INDEMNITY 0 1## MANAGED CARE 1 1## MEDICAID 1 0## MEDICARE 11 6
## ## Fisher's Exact Test for Count Data## ## data: table(Prace$Insurance_Type, Prace$Race)## p-value = 0.8089## alternative hypothesis: two.sided
Welcome !
Keyboard shortcuts
↑, ←, Pg Up, k | Go to previous slide |
↓, →, Pg Dn, Space, j | Go to next slide |
Home | Go to first slide |
End | Go to last slide |
Number + Return | Go to specific slide |
b / m / f | Toggle blackout / mirrored / fullscreen mode |
c | Clone slideshow |
p | Toggle presenter mode |
t | Restart the presentation timer |
?, h | Toggle this help |
Esc | Back to slideshow |